

FUNDACIÓN TECNALIA RESEARCH & INNOVATION

C/ Vega de Tapia, s/n 48903 Barakaldo (Bizkaia)

Tlf./Phone: +34 946073490 - Fax: +34 946073495

CIF:G48975767

Test Report No. B126-11-CD-01E

Page 1 of 15

Tests specified by the customer

TEST SAMPLE: CURRENT TRANSFORMER

DESIGNATION: CA-123

MANUFACTURER: ELECTROTÉCNICA ARTECHE HNOS, S.A

REQUESTED BY: ELECTROTÉCNICA ARTECHE HNOS, S.A

Derio Bidea, 28 – 48100 MUNGIA (BIZKAIA)

STANDARD Sn-16.1g and IEC 60044-1:1996+A1 2000 +A2:2002

RECEPTION DATE: September 13th 2011

TESTS DATE: September $15^{th} - 19^{th}$ 2011

ISSUE DATE: September 23th 2011

THE PRESENT REPORT CONSISTS OF:

No of pages: 15 Annex: 15

Test Chief / High Voltage Area	Head of Electrical Equipment Laboratory
	Tim War hirls
Estíbaliz Montes	Luis Martínez

INDEX

1.	DESIGN	ATION OF THE TEST OBJECT	3
2.	TESTS F	PERFORMED. STANDARD	4
3.	RECEPT	TION PLACE AND TESTING PLACE	4
4.	TYPE TE	ESTS	5
4	.1. W іт	HSTAND TEST BETWEEN THE CURRENT TRANSFORMER'S TERMINALS	5
	4.1.1.	Test method	
	4.1.2.	Result	6
4	.2. WE	T TEST	
	4.2.1.		
	4.2.2.	Result	
4		ORT-CIRCUIT WITHSTAND TEST	
		Test method	
	4.3.2.	Verifications	11
5.	SUMMA	RY OF RESULTS	15

Annex PHOTOGRAPHS OSCILOGRAMME

IMPULSES

1. DESIGNATION OF THE TEST OBJECT

CURRENT TRANSFORMER.

The characteristics of the test object, provided by the manufacturer, are the following:

Manufacturer: ARTECHE Type CA-123

Serial No.: 11006584/15

Manufacturing year: 2011

Ratio: 10 / 5 - 5 APrimary terminal markings: H1 H2

Rated primary current, Ipn: 10 A

Secondary terminal markings:X1-X2Y1-Y2Rated secondary current, Isn:5 A5 ARated output:10 VA10 VAAccuracy class:0.20.2

Extended rated current: 120%

Rated insulation level: 123/185/450 kV Rated short-time thermal current, Ith: 0.8 kA - 1 s

Rated dynamic current, Idyn: 2 kA
Rated frequency: 60 Hz

See photographs of the test object and its rating plate in the annex.

2. TESTS PERFORMED. STANDARD

The test sequence has been the following:

TEST	TYPE/ROUTINE
Withstand test between the current transformer's terminals	Туре
Wet test	Туре
Short-time current test	Туре

The tests have been carried out according to customer's specifications and according to the following standard:

- Standard technical specification. Hydro-Quebec TransÉnergie. Energy transport expertise and technical support. Energy transport apparatus. "Testing of instrument transformers 26,4 kV to 765 kV. SN-16.1g July 2003"
- IEC 60044-1:1996 + A1:2000 + A2:2002, "Instrument transformers. Part 1: Current Transformers".

Quoted standard:

- IEC 60060-1:1989, "High-voltage test techniques Part 1: General definitions and test requirements".
- IEC 60270: 2000, "High-voltage test techniques Partial discharge measurements".

The calculation of the uncertainties of the measurements is available.

3. RECEPTION PLACE AND TESTING PLACE

All the tests have been performed at TECNALIA's installations except the routine tests performed after the short-circuit test that have been performed in ARTECHE's installations in Munguia.

4. TYPE TESTS

4.1. Withstand test between the current transformer's terminals

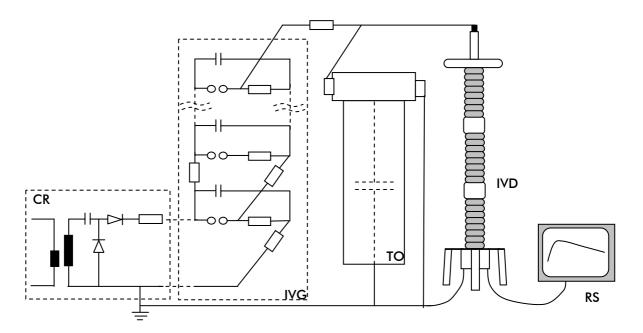
4.1.1. Test method

The protection device of the primary winding must be removed for the test. The test consists in applying 5 positive impulses and 5 negative impulses on each terminal of the primary winding. The test voltage must be equal to 130% of the lightning impulse protection level of the voltage limited device installed.

The wave shape must be the closest to the standard wave shape 1,2 μ s (±30%)/50 μ s(±20%). Considering the low impedance of the winding, it can be difficult to obtain a waveform having a 50 μ s tail time due to testing laboratory limitations. Regarding the wave shape an agreement with the customer is reached.

Ambient air conditions during the test:

Temperature: 24.4 °C


Pressure: 101.7 kPa

Relative humidity: 55 %

Applied impulses can be seen in the annex.

The scheme of the test is the following:

CR: Charging rectifier

IVG: Impulse voltage generator

TO: Test object

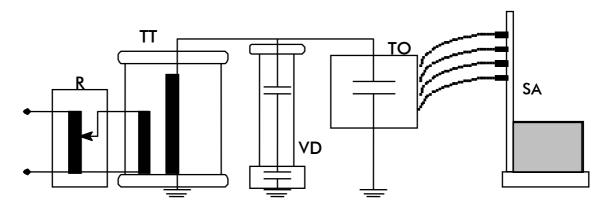
IVD: Impulse voltage divider

RS: Recording system

4.1.2. Result

Result: CORRECT.

4.2. Wet test


4.2.1. Test method

The wet test has been carried out in accordance with the Standard IEC 60060-1.

The voltage test is applied between the terminals of the primary winding connected together and earth. The frame and the terminals of secondary windings are connected together and to earth.

Test voltage: 185 kV
Test duration: 60 s
Test voltage frequency: 50 Hz

Test scheme is represented in the following figure:

R: Regulator

TT: Test Transformer VD: Voltage divider

TO: Test object

SA: Spray apparatus

According to the standard the test object is pre-wetted initially for 15 min under the specified wetting conditions, and these conditions remain within the specified tolerances throughout the test which is performed without interrupting the wetting.

Precipitation conditions during the test (and standard conditions):

Characteristic	Test	<u>Standard</u>
Precipitation rate – vertical component: mm/min	1.7	1.0 to 2.0
Precipitation rate – horizontal component: mm/min	1.5	1.0 to 2.0
Limit for any individual measurement: mm/min	Correct	±0.5 from average
Temperature of water:°C	22	mb. temp. ±15 °C
Resistivity of water:Ωm	105.4	100 ±15 Ωm

Before the test, test object is in dry and clean conditions.

Ambient air conditions during the test have been the following.

Temperature: 24.3 °C

Pressure: 101.2 kPa

Relative humidity: 56 %

Atmospheric correction factor, K_t, has been considered equal to unity.

4.2.2. Result

Result: CORRECT. No disruptive discharge occurs on the test object during the test.

4.3. Short-circuit withstand test

4.3.1. Test method

The thermal test is done by circulating the rated short-circuit current I_{th} in the primary winding for a time of one second or until the product I^2t is at least equal to I^2_{th} reached equivalent. The maximal duration of the test must be 5 seconds.

The dynamic tests must be done by applying, during 0.017 second, an asymmetric current whose first peak is equal to the rated dynamic current whose first peak is equal to the rated dynamic current defined in the standard technical specification for the supply.

The transformer is considered to pass the test successfully if the following conditions are fulfilled:

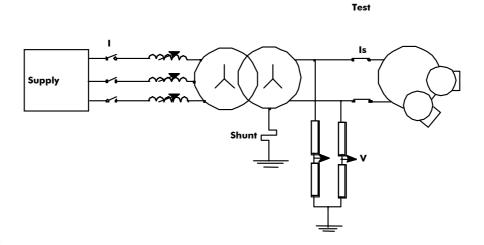
- The transformer did not sustain any apparent damage
- The accuracy did not change significantly
- The repetition of the routine tests do not show any drop in the performance or failure of the apparatus

Rated values for the test are the following:

Rated short-time thermal current. I_{th} : 0.8 kA - 1 s

Rated dynamic current. I_{dyn}: 2 kA

See oscilogram in the annex of the report.


Taking into account the requirements of the customer, the resistances of the primary and secondary windings have been measured before and after the short circuit test. Obtained results have been the following:

	BEFORE (mΩ)	AFTER (mΩ)
X1-X2	129.09	129.5
Y1-Y2	128.15	134.4
H1-H2	129.8	132

Measurements have been performed with a current of 1A and with an ambient temperature of 26°C.

Test circuit

Results

Registered values

Oscillogram No.	2
Short-time r.m.s. current Ith (kA)	0.828
Short-time peak value current. Idyn (kA)	2.112
Duration (s)	1.009
Joule integral I ² t (AAs.10 ⁵)	7.18
Frequency (Hz)	50
Temperature (°C)	25

Result: **CORRECT**. According to the following verifications:

4.3.2. Verifications

a) Visual check of the transformer

Result: **CORRECT**. The transformer is not visibly damaged and the insulation next to the surface of the conductor does not show significant deterioration.

b) Dielectric tests

Power-frequency withstand test on the primary winding

The voltage test is applied between the terminals of the primary winding connected together and earth. The frame and the terminals of secondary windings are connected to earth.

Test voltage value: 185 kV
Test voltage frequency: 50 Hz
Test duration: 60 s

Result: CORRECT. There are neither disruptive discharges nor damage in the insulation.

Power-frequency withstand test on the secondary windings

The test voltage is applied successively between the terminals of each secondary winding connected together and earth. The frame, the primary winding and the other secondary windings are connected to earth.

Test voltage value: 3 kV
Test voltage frequency: 50 Hz
Test duration: 72 s

Result: CORRECT. There are neither disruptive discharges nor damage in the insulation.

Partial discharge measurement

The partial discharge test voltage is reached while decreasing the voltage after the pre-stress voltage with a value of 90% of the power frequency withstand voltage test (pre-stress 166.5 kV,60 s).

After reaching this voltage value the voltage is decreased without interruption at the partial discharges test voltage and maintained at this level for a minimal duration of ten minutes. At each minute, the partial discharges level is recorded.

The maximal partial discharges level measured at the specified voltage for the partial discharges test must not exceed 10 pC-. Partial discharges voltage level has been specified by the customer in 148 kV.

Test voltage (kV)	Test frequency(Hz)	Total duration of	Measurement	Admissible level
		voltage (s)	(pC)	(pC)
148	50	60	4.562	10
148	50	120	4.650	10
148	50	180	4.252	10
148	50	240	4.541	10
148	50	300	4.452	10
148	50	360	4.910	10
148	50	420	4.834	10
148	50	480	4.970	10
148	50	540	4.996	10
148	50	600	5.625	10

Background noise: 3pC

Result: **CORRECT**, the measured partial discharge levels do not exceed the limits specified in the specification.

Inter-turn overvoltage test

The test is performed according to procedure B: with the primary winding open-circuited, the prescribed test voltage (at some suitable frequency) is applied successively to the terminals of each secondary windings for 60 s, providing that the r.m.s. value of the secondary current does not exceed the rated extended current.

The value of the test frequency shall not be greater than 400 Hz. In this case test values have been:

Test frequency 400 Hz
Test duration 15 s

At this frequency, if the voltage value achieved at the rated extended secondary current 6 A) is lower than 4.5 kV peak). The obtained voltage is to be regarded as the test voltage.

Secondary	Primary (A)	Voltage (kV)
X1-X2	6	0.89
Y1-Y2	6	0.91

Result: **CORRECT**. Measured values fulfil with the values of the standard.

Measurement of the capacity and dielectric dissipation factor

The measurement of the capacitance and the dielectric dissipation factor must be carried out at 10 kV and at Um/ $\sqrt{3}$ in accordance with IEC 60044-1 in which it is stated that the measurement of the capacity and dielectric dissipation factor must be done after the power frequency test on the primary winding. Voltage test is applied between the short circuited terminals of the primary winding and earth. Secondary windings and metallic frame will be connected to measuring bridge.

Obtained results were the following:

Test voltage (kV)	Frequency (Hz)	Capacity (pF)	Dissipation factor
71	50	718	0.1917
10	50	718	0.1834

Measurements have been performed at an ambient temperature of 25°C.

c) Repetition of determination of current error and phase displacement

	X1-X2 CI 0,2					
Burden (VA)	In(%)		In(%) Intensity error (%)		Phase displacement (min)	
			Measured	Limit	Measured	Limit
		before	0.14		2	
2.5	120	after	0.12	±0.1	3	±5
(25%)		difference	0.02		-1	
(2070)		before	0.15		6	
	5	after	0.12	±0.175	7	±7.5
		difference	0.03		-1	
	120	before	0.04	±0.1	1	±5
		after	0.02		2	
		difference	0.02		-1	
	100	before	0.03		1	±5
10		after	0.01	±0.1	1	
(100%)		difference	0.02		0	
(10070)	20	before	-0.03	±0.1	4	±5
		after	-0.05		5	
		difference	0.02		-1	
	5	before	-0.06	±0.175	7	
		after	-0.08		9	±7.5
		difference	0.02		-2	


			Y1-Y2 CL 0.2			
Burden (VA)	In(%)		Intensity error (%)		Phase displacement (min)	
(/			Measured	Limit	Measured	Límite
		before	0.13		2	
2.5	120	after	0.12	±0.1	2	±5
(25%)		difference	0.01		0	
(2070)		before	0.14		6	
	5	after	0.12	±0.175	7	±7.5
		difference	0.02		-1	
		before	0.05		1	
	120	after	0.04	±0.1	1	±5
		difference	0.01		0	
		before	0.04		1	
10	100	after	0.03	±0.1	1	±5
(100%)		difference	0.01		0	
(10070)		before	-0.02		4	
	20	after	-0.04	±0.1	4	±5
		difference	0.02		0	
		before	-0.05		7	
	5	after	-0.07	±0.175	8	±7.5
		difference	0.02		-1	

Result: **CORRECT**. The errors after demagnetization do not differ from those recorded before the tests by more than half the limits of error appropriate to its accuracy class.

5. SUMMARY OF RESULTS

TEST	RESULT
Short-circuit withstand capability test	CORRECT
Wet test	CORRECT
Withstand test between the current transformer's terminals	CORRECT

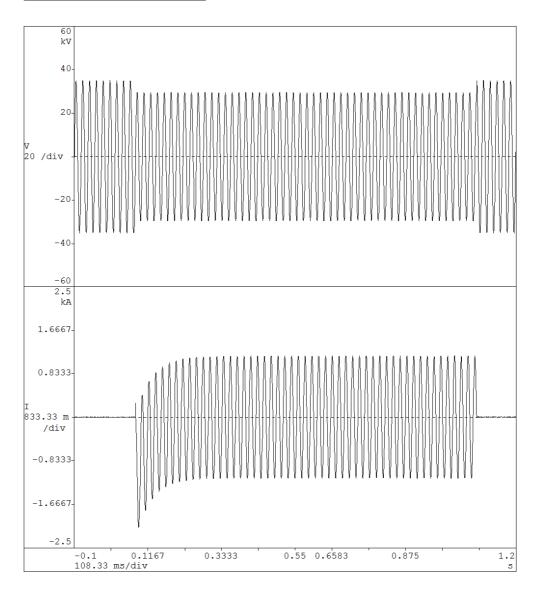
Ratings plate

Ratings plate

Lightning impulse test lay-out.

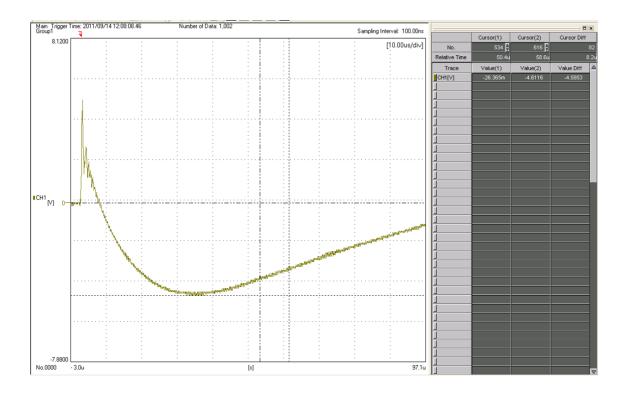
Short-circuit test lay-out.

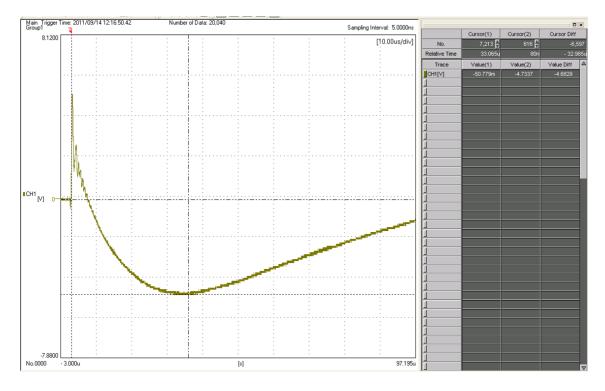
Routine tests in ARTECHE's installations.

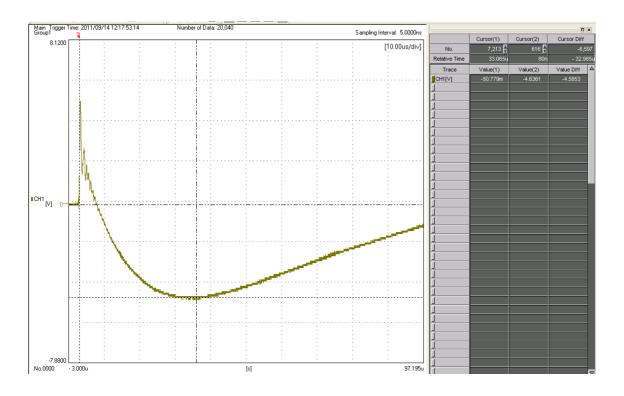


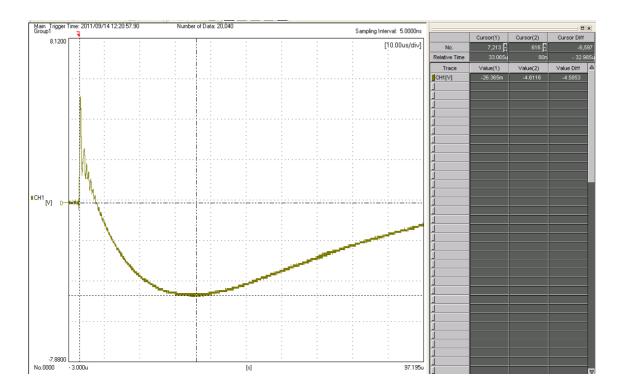
V _(eficaz/RMS)	24.58 kV
(eficaz/RMS)	0.828 kA
I_(cresta/peak)	2.112 kA
l ² ·t	7.18E+05 AAs
ti	0.077 s
t _e	1.086 s
t total (te-ti)	1.009 s

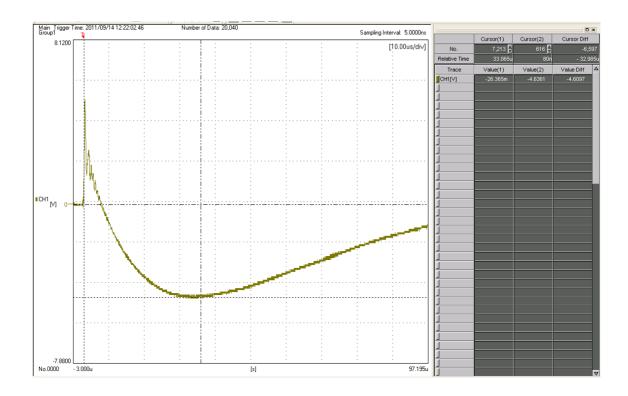
Fecha / Date: 16/09/11

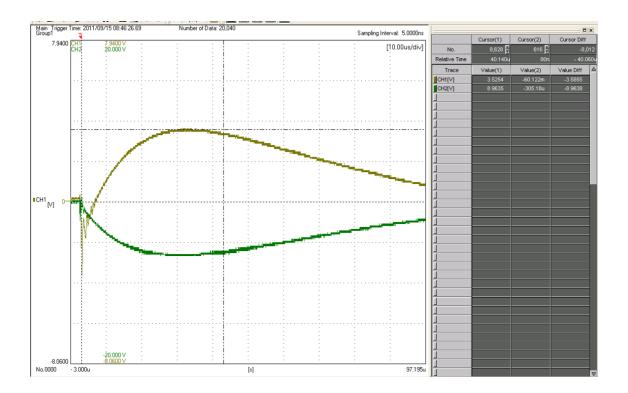

Nº EXPEDIENTE: B126-11-CD

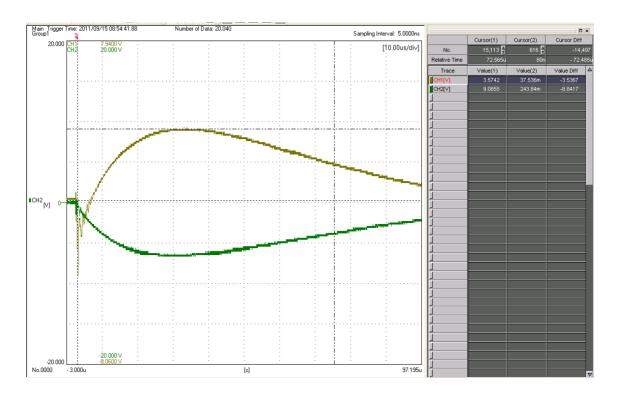

Nº OSCILOGRAMA: 2

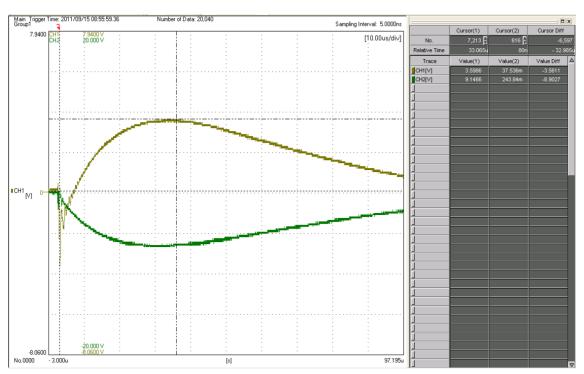



H1. Negative pulses.

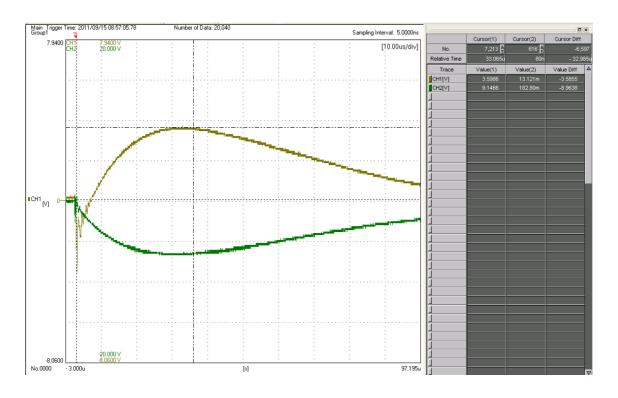


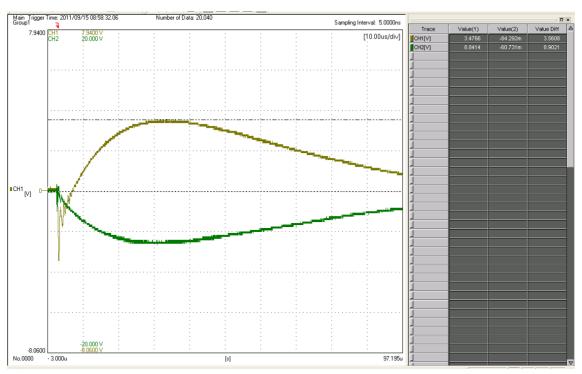


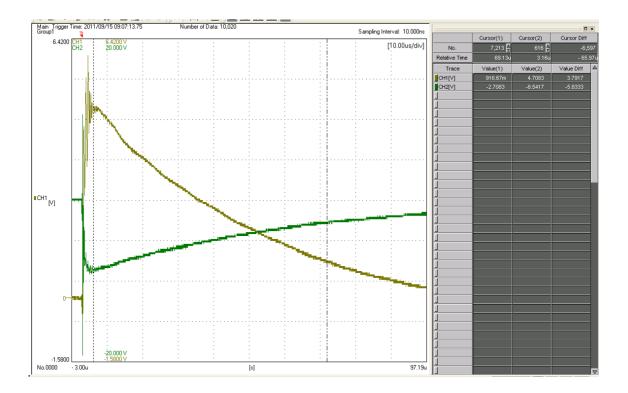


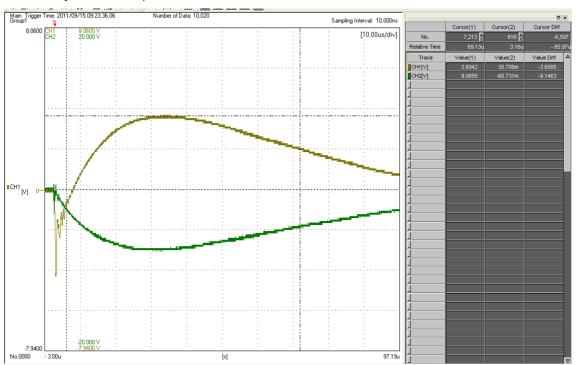


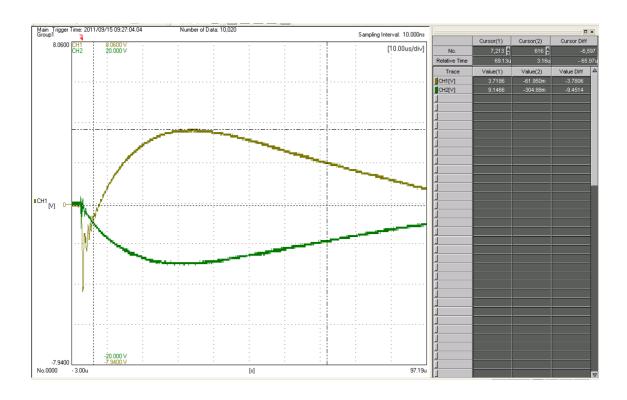
H1. Positive pulses.

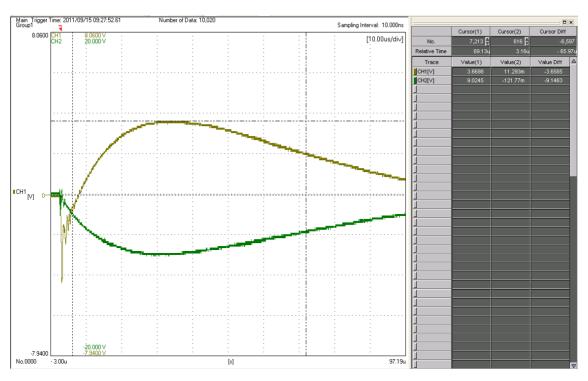




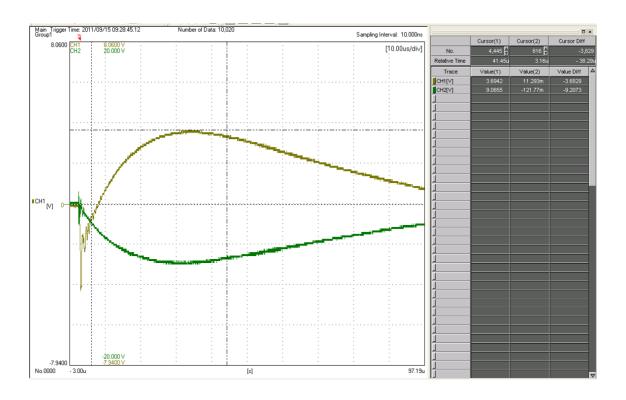


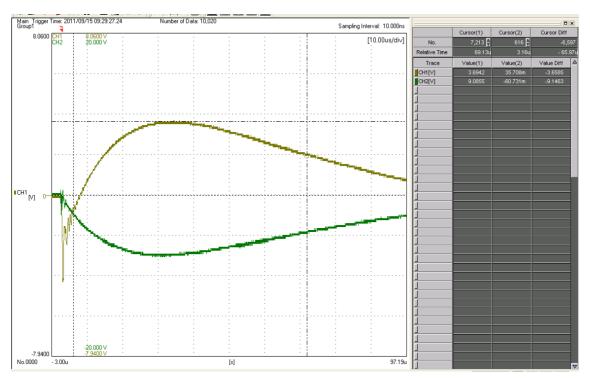


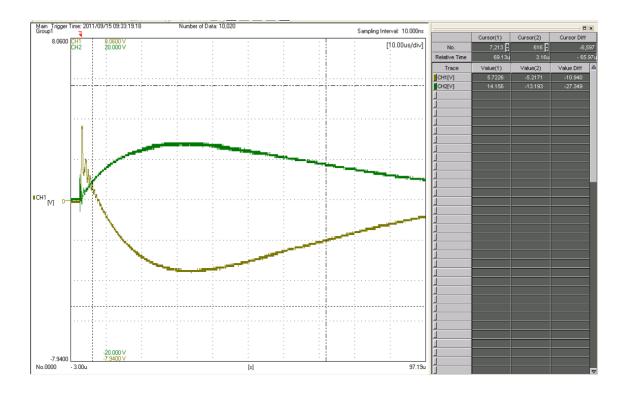

Verification of the behaviour of the voltage protection device

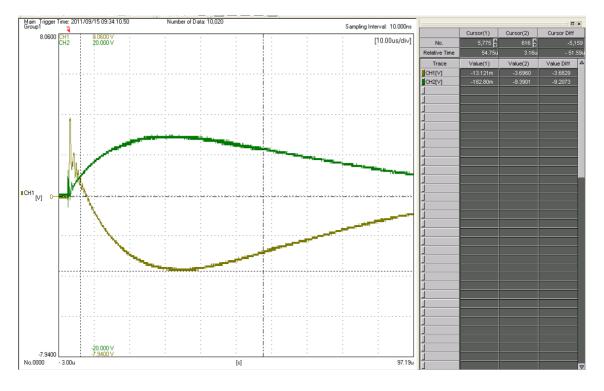


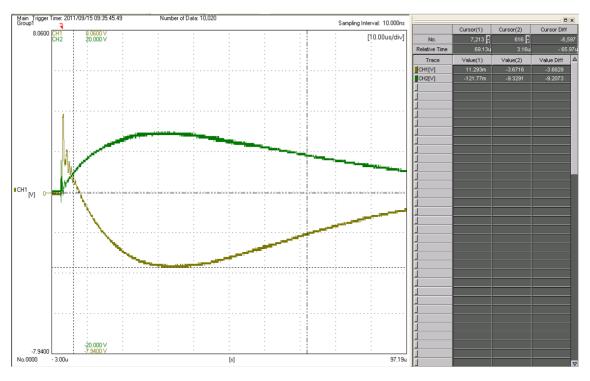
H2 Primary. Positive impulse.










H2 Primary. Negative impulses.

